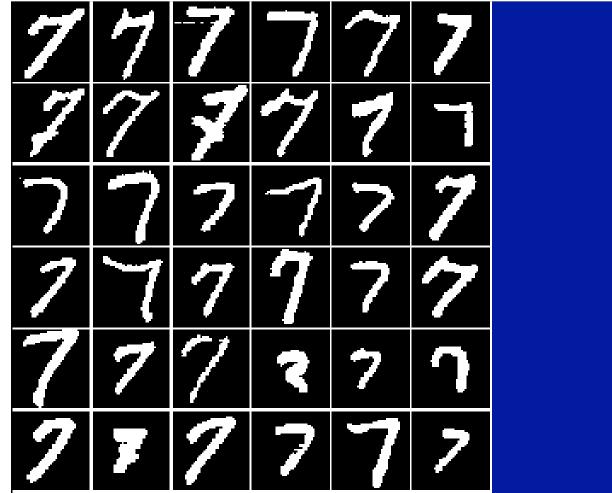
# Joint Alignment: What's It Good For?

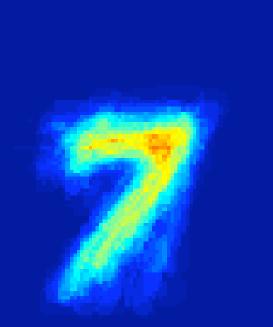
Erik Learned-Miller, with Vidit Jain, Andras Ferencz, Gary Huang, Lilla Zollei, Sandy Wells, ....

CHUSETTS

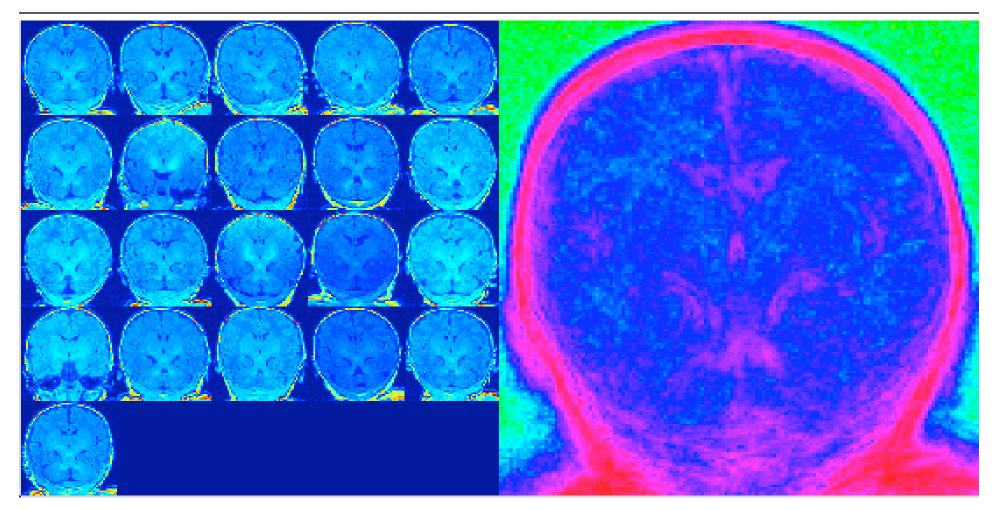
**Computer Science** 

## Congealing (CVPR 2000, PAMI 2006)





### MRI Bias Removal (NIPS 2005, MICCAI 2005, PAMI 2006)



## **Five Applications**

- Image factorizations
  - For transfer learning, learning from one example
- Alignment for Data Pooling
  - 3D MR registration
  - EEG registration
- Artifact removal
  - Magnetic resonance bias removal
- Improvements to recognition algorithms
  - Alignment before recognition
- Defining anchor points for registration
  - Find highly repeatable regions for future registrations

## Congealing

- Process of joint "alignment" of sets of arrays (samples of continuous fields).
- 3 ingredients
  - A set of arrays in some class
  - A parameterized family of *continuous* transformations
  - A criterion of joint alignment

## **Congealing Binary Digits**

#### 3 ingredients

- A set of arrays in some class:
  - Binary images
- A parameterized family of *continuous* transformations:
  - Affine transforms
- A criterion of joint alignment:
  - Entropy minimization

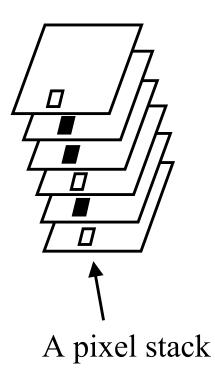
## Congealing

| 3 | 3 | 3 | 3 | 3 | 3 |  |
|---|---|---|---|---|---|--|
| 3 | 3 | 3 | 3 | 3 | 3 |  |
|   |   |   |   | 3 |   |  |
| 3 | 3 | 3 | 3 | 3 | 3 |  |
| 3 | 3 | 3 | 3 | 3 | 3 |  |
| 3 | 3 | 3 | 3 | 3 | 3 |  |

### Criterion of Joint Alignment

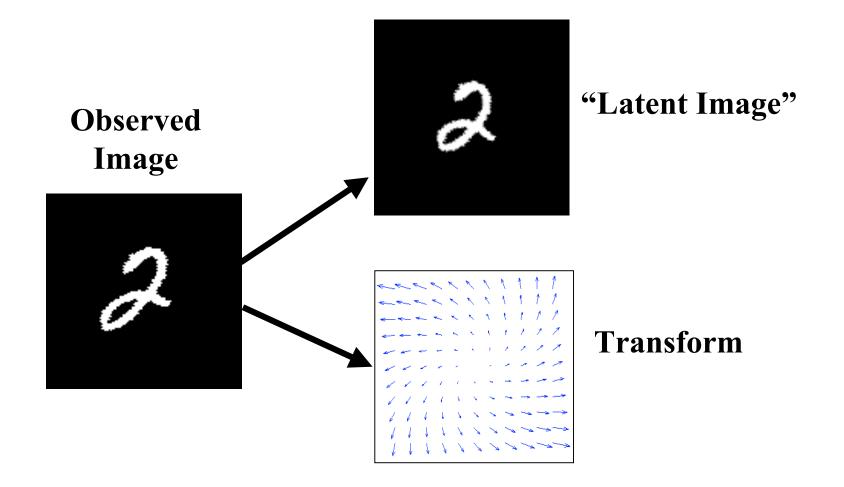
 Minimize sum of pixel stack entropies by transforming each image.

|   | 0 | 0 | 0 | 0 | 0          | Ø | 0 | 0 | 0 | 0 |  |
|---|---|---|---|---|------------|---|---|---|---|---|--|
| ) | 0 | 0 | 0 | 0 | 0          | 0 | 0 | 0 | 0 | 0 |  |
| C | 0 | 0 | 0 | 0 | 0          | 0 | 0 | 0 | 0 | 0 |  |
| 2 | 0 | 0 | 0 | 0 | $\Diamond$ | 0 | 0 | 0 | 0 | Д |  |
| 0 | 0 | 0 | 0 | 0 | 0          | 0 | 0 | 0 | 0 | 0 |  |
| 0 | 0 | 0 | Ð | 0 | 0          | 0 | D | 0 | Ð | 0 |  |



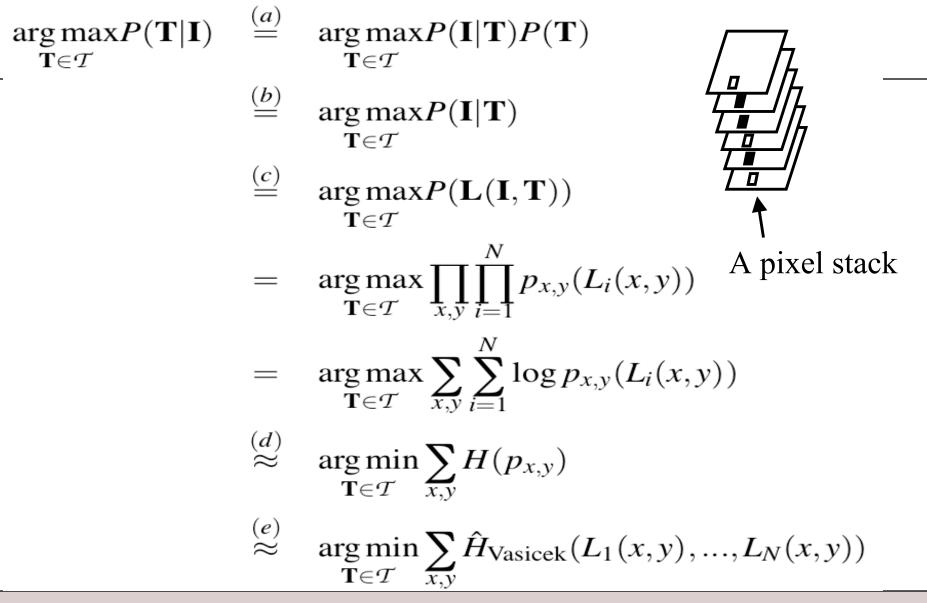
Note: Mutual Information doesn't make sense here.

## An Image Factorization



Learned-Miller (Previous work by Grenander,, Frey and Jojic.)

9



## Why Minimize Entropy?

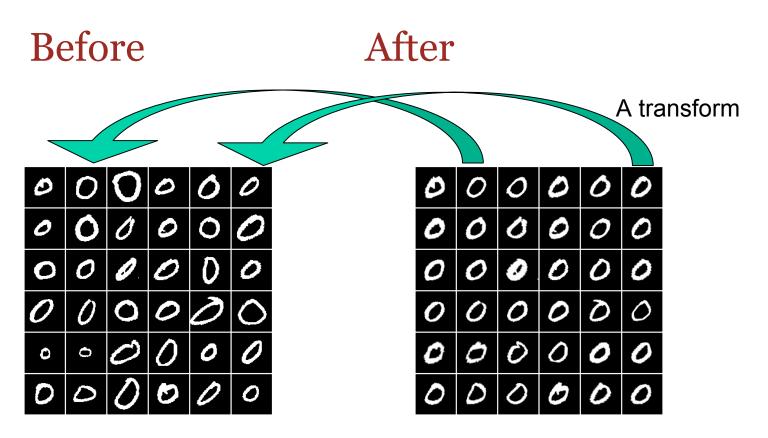
 Negative entropy is just the average log likelihood of points under their own distribution.

## Min entropy = maximum non-parametric likelihood

## The Independent Pixel Assumption

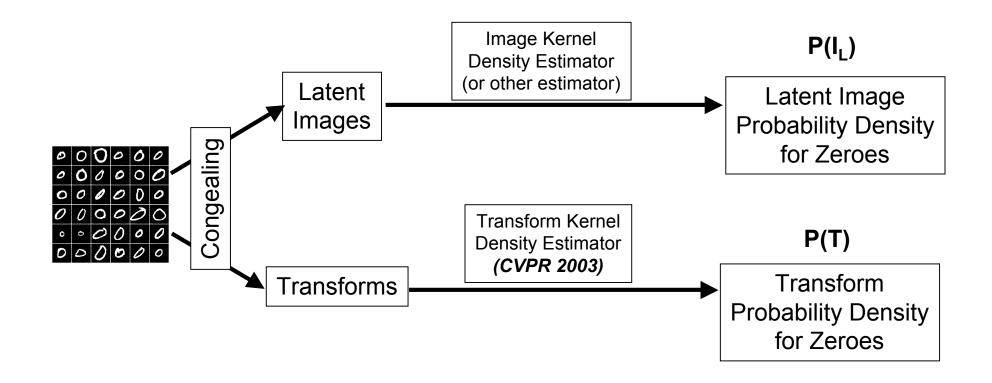
- Model assumes independent pixels
- A poor generative model:
  - True image probabilities don't match model probabilities.
  - Reason: heavy dependence of neighboring pixels.
- However! This model is great for alignment and separation of causes!
  - Why?
  - Relative probabilities of "better aligned" and "worse aligned" are usually correct.
- Once components are separated, a more accurate (and computationally expensive) model can be used to model each component.

## Congealing



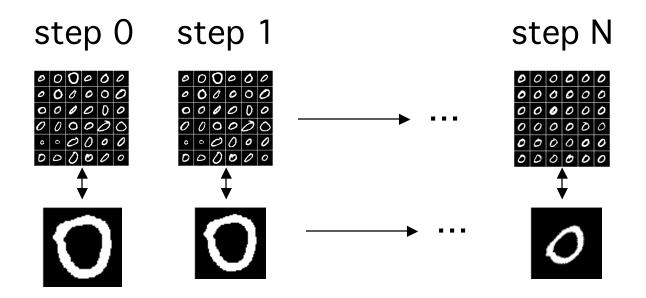
Each pair implicitly creates a sample of the transform T.

## **Character Models**



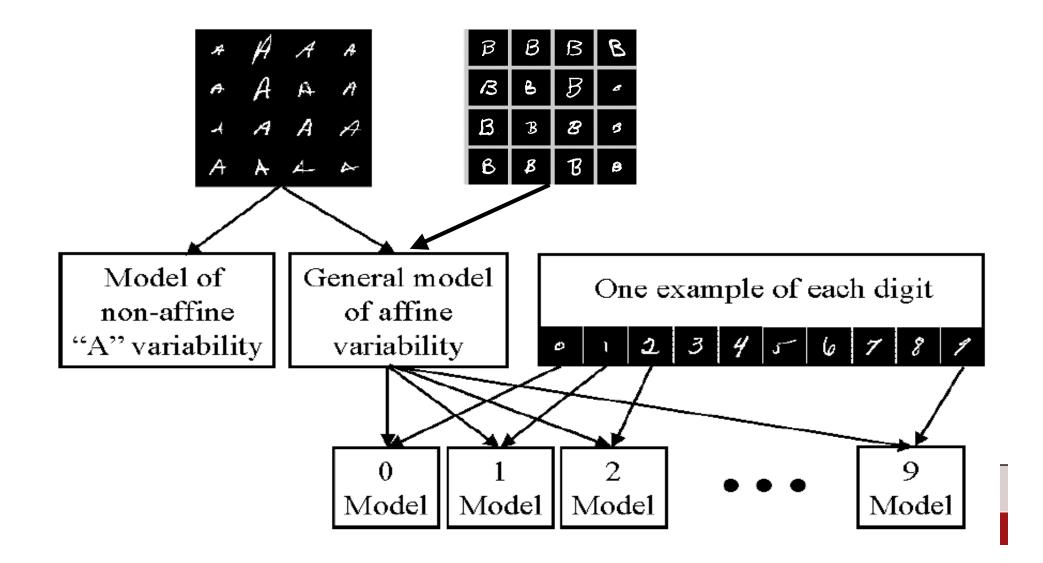
## How do we line up a new image?

Sequence of successively "sharper" models



Take one gradient step with respect to each model.

## Digit Models from One Example



## Next Application: Alignment of 3D Magnetic Resonance Volumes

Lilla Zollei, Sandy Wells, Eric Grimson

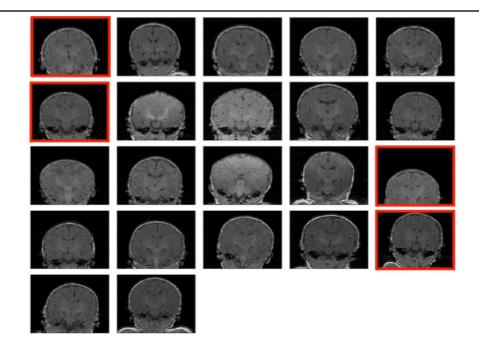
## **Congealing MR Volumes: Joint Registration**

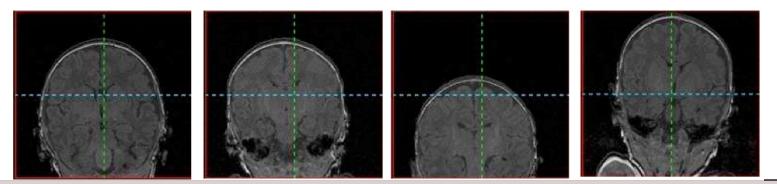
- 3 ingredients
  - A set of arrays in some class:
    - Gray-scale MR volumes
  - A parameterized family of *continuous* transformations:
    - 3-D affine transforms
  - A criterion of joint alignment:
    - Grayscale entropy minimization
- Purposes:
  - Pooling data for fMRI studies
  - Building general purpose statistical anatomical atlases

## Why Entropy?

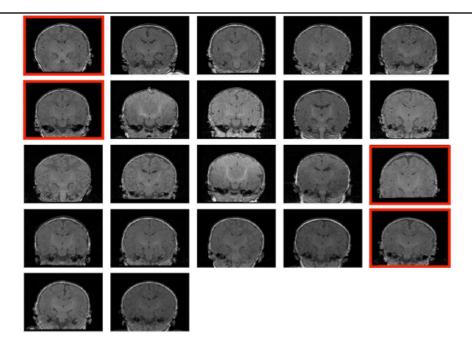
- Drives volumes to having mass concentrated in a small number of tissues.
- Comparison to Transformed Mixture of Gaussians (Frey and Jojic).
- Convexity of entropy in distribution.

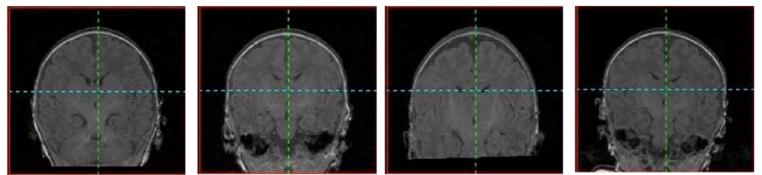
## Congealing Gray Brain Volumes (ICCV 2005 Workshop)



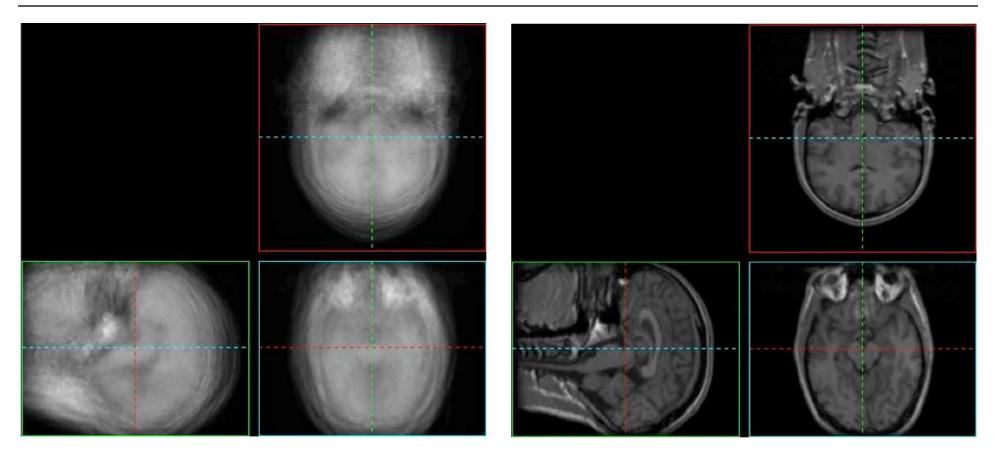


## Aligned Volumes





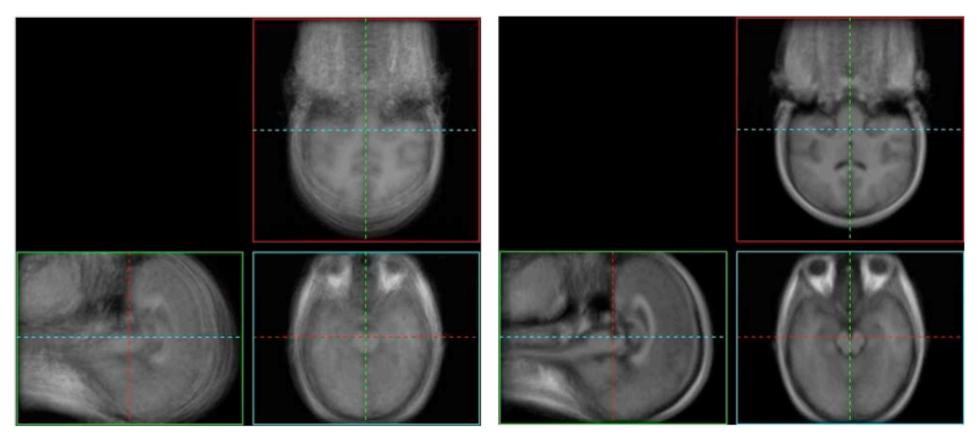
## Validation: Synthetic Data



#### Unaligned input data sets

Aligned input data sets

## Real Data



Unaligned input data sets

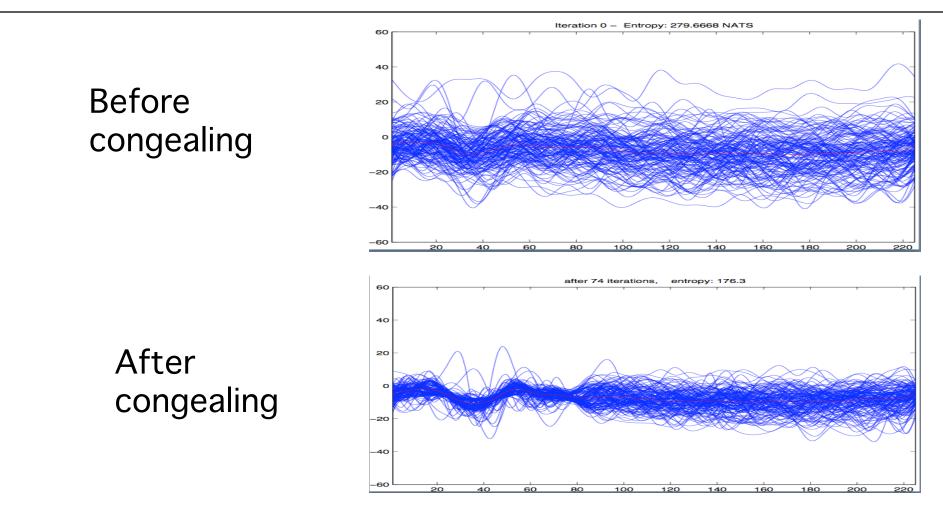
Aligned input data sets

<u>Data set</u>: 28 T1-weighted MRI; [256x256x124] with (.9375, .9375, 1.5) mm<sup>3</sup> voxels <u>Experiment</u>: 2 levels; 12-param. affine; N = 2500; iter = 150; time = <u>1209 sec!!</u>

## MR Congealing Challenges

- Big data
  - 8 million voxels per patient
  - 100 patients
  - 12 transform *parameters*
  - 20 iterations
- Techniques:
  - Stochastic sampling
  - Multi-resolution techniques
  - Don't use visual basic

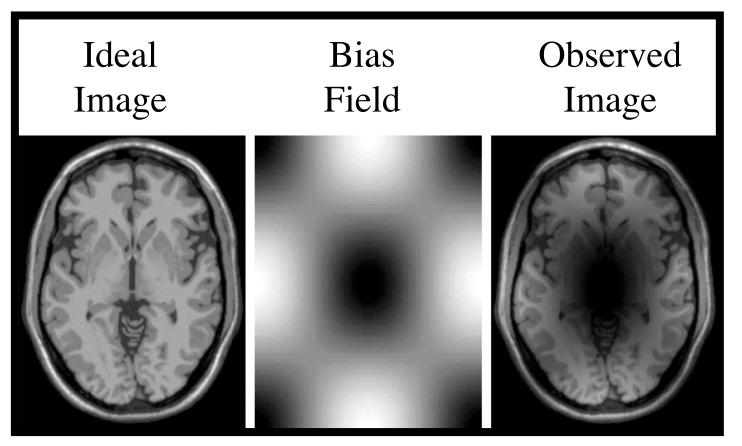
## Signal to Noise in Event Related Potentials



## Next Application: Bias Removal in Magnetic Resonance Images

Parvez Ahammad, Vidit Jain

## The Problem



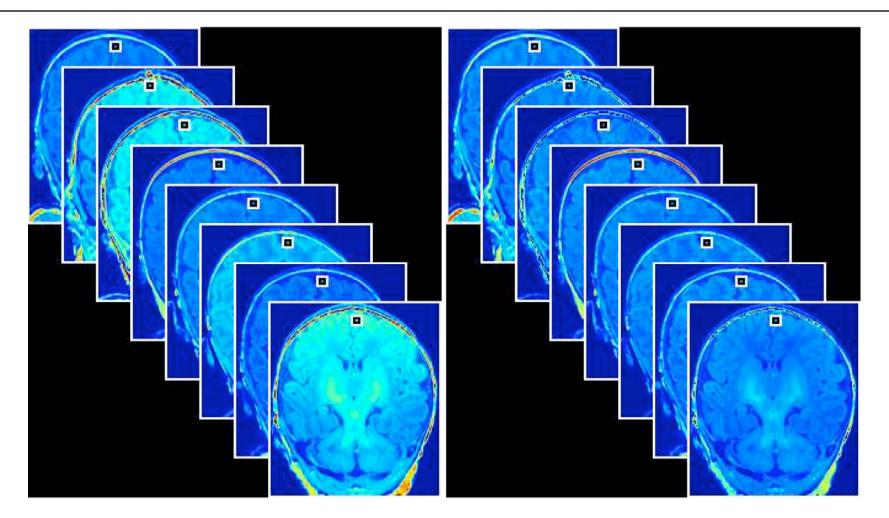
Bias fields have low spatial frequency content

## Bias Removal in MR as a Congealing Problem

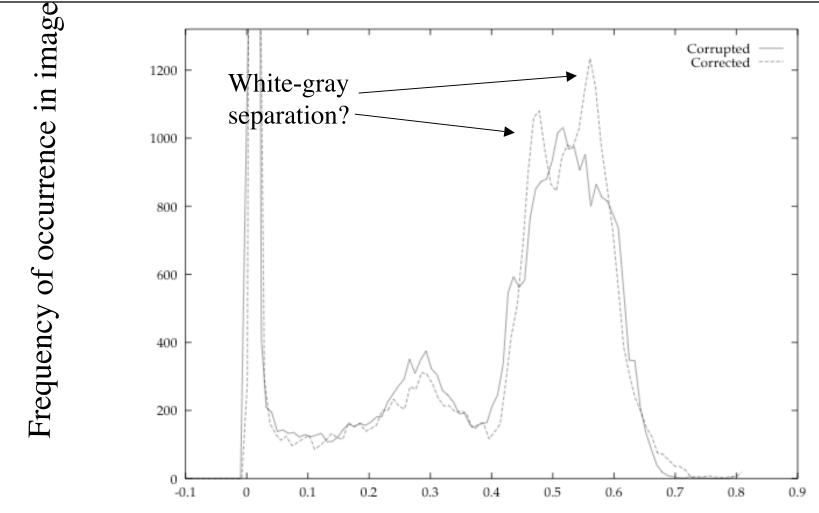
#### 3 ingredients

- A set of arrays in some class:
  - MR Scans of Similar Anatomy (2D or 3D)
- A parameterized family of *continuous* transformations:
  - Smooth brightness transformations
- A criterion of joint alignment:
  - Entropy minimization

## Congealing with brightness transforms



## **Grayscale Entropy Minimization**

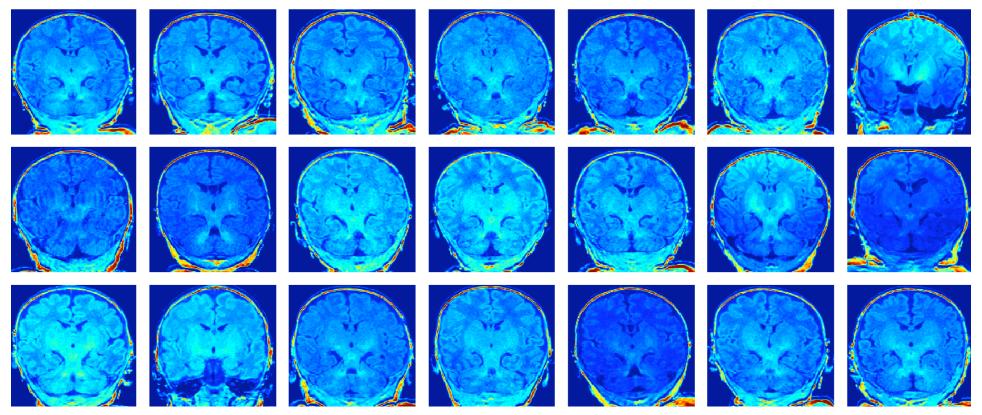


Learned-Miller

#### Image intensity

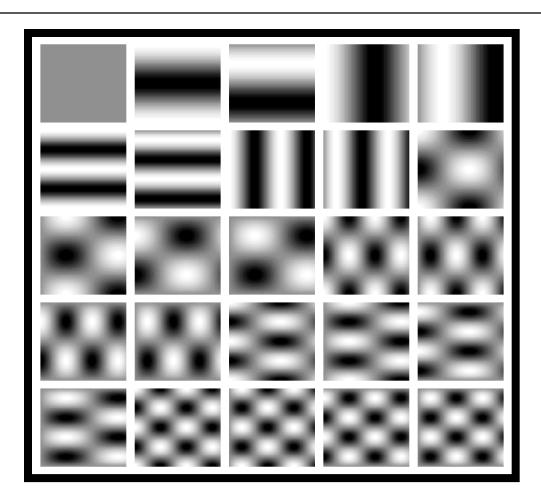
## Some Infant Brains

(thanks to Inder, Warfield, Weisenfeld)

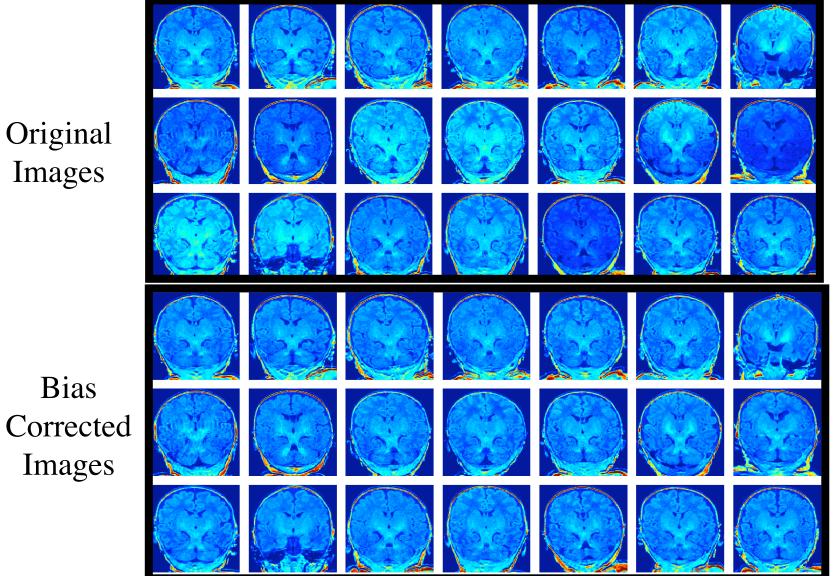


- Pretty well registered (not perfect)
- Pretty bad bias fields

## Fourier Basis for Smooth Bias Fields



## Results



Images

## Assumptions

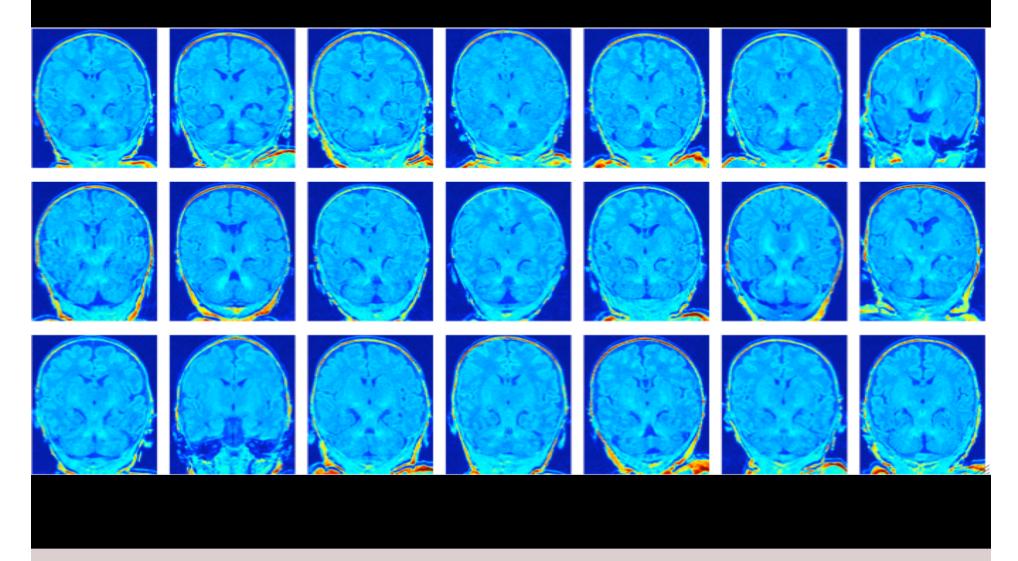
- Pixels in same location, across images, are independent.
  - When is this not true?
    - Systematic bias fields.
- Pixels in same image are independent, given their location.
  - Clearly not true, but again, doesn't seem to matter.
- Bias fields are truly bandlimited.

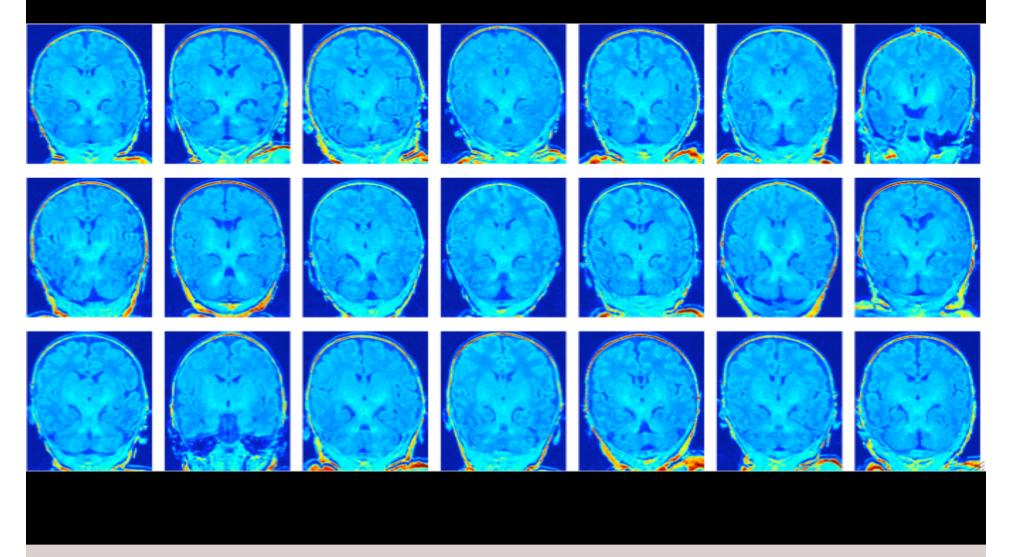
## Some Other Recent Approaches

- Minimize entropy of intensity distribution in single image
  - Viola (95)
  - Warfield and Weisenfeld extensions (current)
- Wells (95)
  - Use tissue models and maximize likelihood
  - Use Expectation Maximization with unknown tissue type
- Fan (02)
  - Incorporate multiple images from different coils, but same patient.

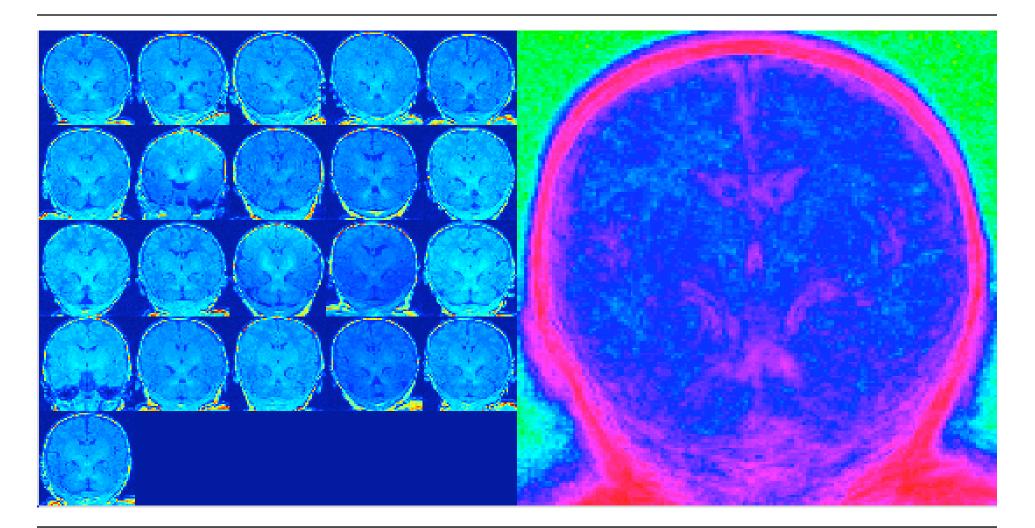
## Potential difficulties with single image method

- If there is a component of the brain that looks like basis set, it will get eliminated.
- Does this occur in practice?
  - Yes!





# UMassAmherst MRI Bias Removal



## Next Application of Congealing: Improving recognition with alignment

Andras Ferencz, Vidit Jain, Jitendra Malik, Gary Huang

## Better Alignment for Better Recognition

- Hyper-feature recognizer
  - Cars, faces, etc. (ICCV 2005, NIPS 2005, BMVC 2006)
- Depends heavily upon alignment:
  - Hyper-features are features conditioned on location and appearance of facial features
- Current alignment:
  - trained separately for each category, requires labeled parts
- Goals:
  - Develop automatic, parts free alignment methods
  - Improve alignments

## Key Question for Identification

#### Which features are distinctive and persistent?

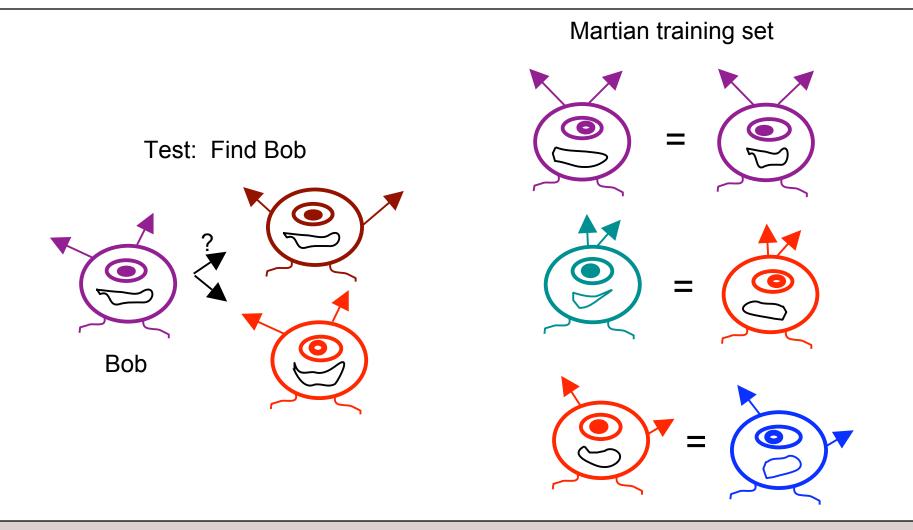




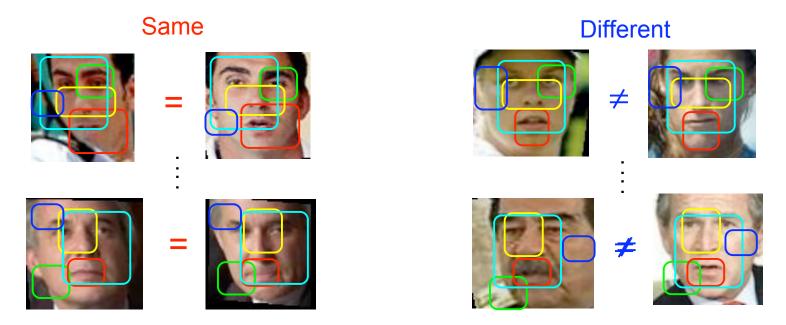




#### **Crash Course on Martian Identification**



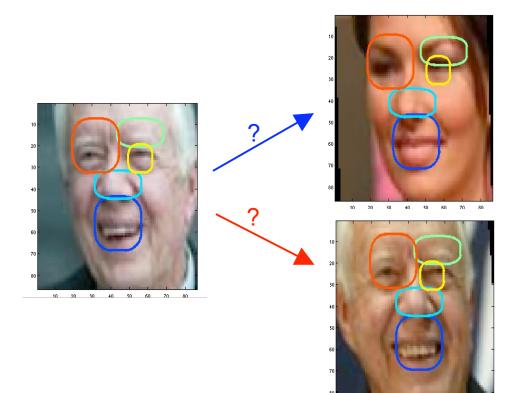
## Learning About the Category



Training set: sample many patch pairs.

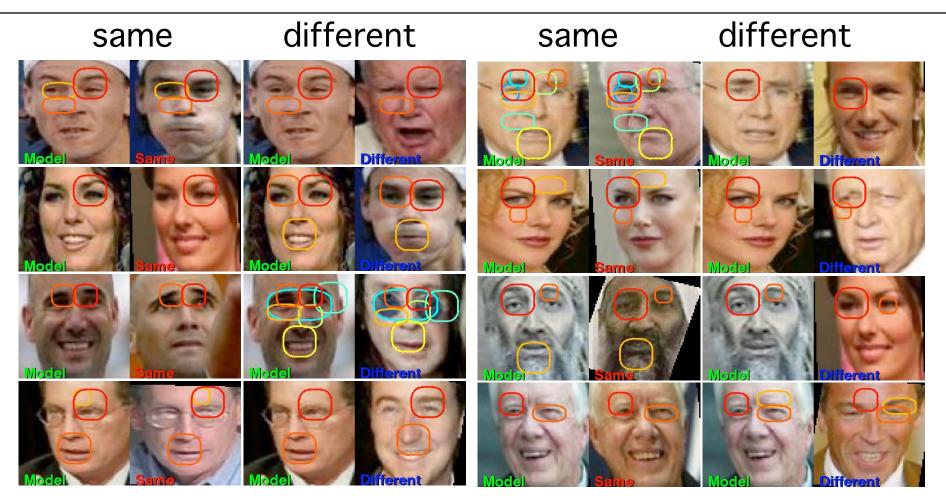
#### BETTER ALIGNMENT PRODUCES BETTER MODELS

# UMassAmherst An Example

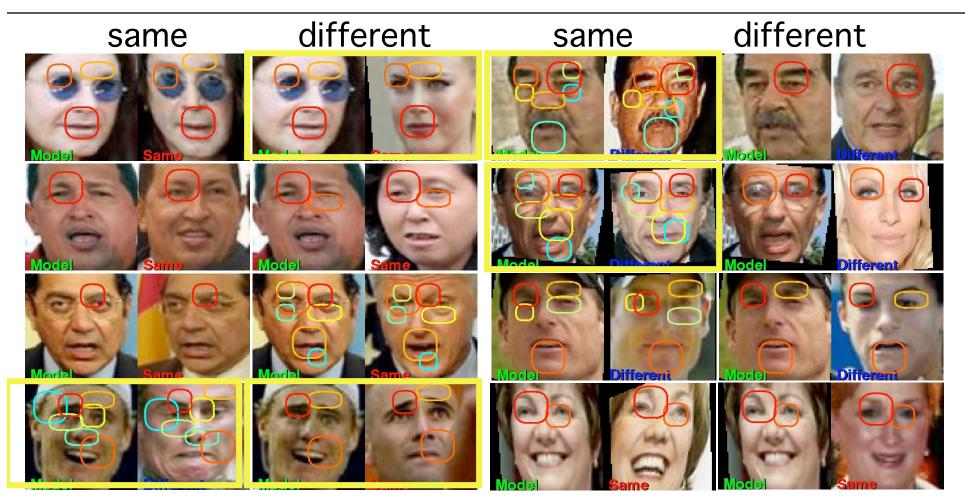


10 20 30 40 50 60 70 80

#### Classification Results (correct)



#### **Classification Results (errors)**



# **Congealing Faces**

- Challenges:
  - High variability
  - Pixel values do not necessarily have low value when aligned
    - Lighting, hue may foil pixel-based method
- Use higher level-features
  - SIFT (what else?)

## Convert face images to arrays of multinomials

- Start with data set of faces
- Compute SIFT at each pixel
- Cluster SIFT vectors (16 clusters)
- At each pixel, form posterior (multinomial) over clusters
- Distribution of pixel stack is mean of multinomial vectors
- Now, do congealing over these multinomial vectors













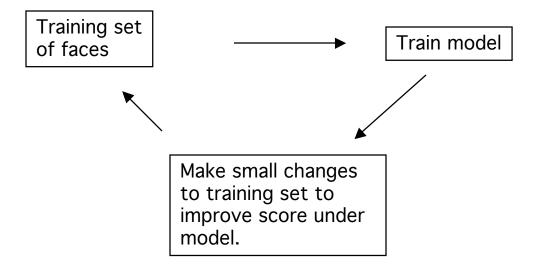






## Converting any Model into a Congealer

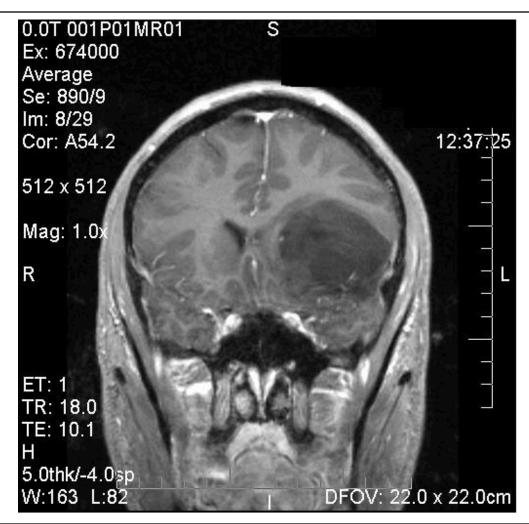
- Congealing as cascade of independent pixel models.
  - Why not use other models?
    - For example, CMU face detector?



## Next Application: Finding Anchor Points for Registration

Just started...

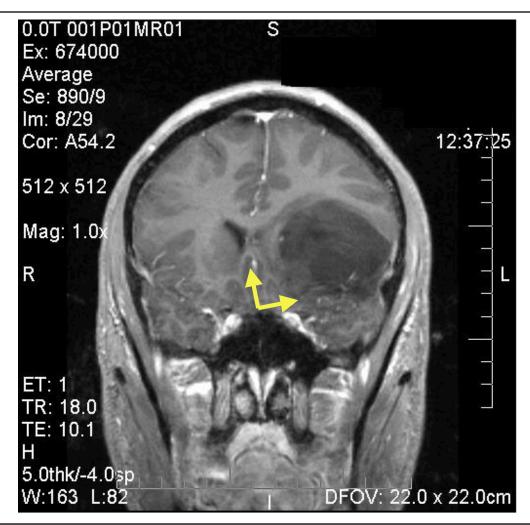
#### How Do We Register This?



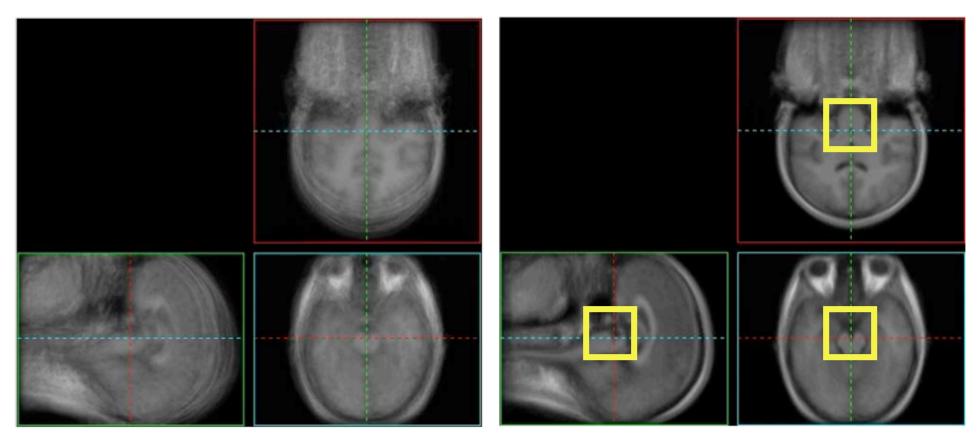
#### **Answer: Anchor Points**

- Radiologists use highly robust, highly informative reference points to determine local coordinate systems in the brain.
- Idea: Use congealing to determine what these anchor points should be.

#### How Do We Register This?



#### Rerun algorithm on 3D windows



Unaligned input data sets

Aligned input data sets

Data set: 28 T1-weighted MRI; [256x256x124] with (.9375, .9375, 1.5) mm<sup>3</sup> voxels Experiment: 2 levels; 12-param. affine; N = 2500; iter = 150; time = 1209 sec!!

## **Properties of Good Anchor Points**

- High reliability
  - Low across patient entropy
- High distinctiveness
  - High within patient entropy

#### Summary

#### Remove source of variability

- MR bias removal
- MR anatomical alignment
- ERP signal alignment
- Better alignment for recognition (hyper-features)
- Model a source of variability
  - Form factorized models (learning from one example)
- Define points of high saliency and repeatability (anchor points) for difficult registration problems